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Rate coefficients for the reaction C2H + CH4 -- CzH2 + CH3 and C2H + CD4 "-" CgHD + CD3 are measured

over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals

are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color

center laser probes the transient removal of C2H (X2Z + (0,0,0)) in absorption. The rate coefficients for the

reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359

K, which can be expressed as kcH, = (1.2 + 0.1) x 10 -II exp[(-491 4- 12)/7] and kCD_ = (8.7 4- 1.8) x

10 -12 exp[(--650 4- 61)/T] cm 3 molecule -1 s-_, respectively. The reaction of C2H + CI-h exhibits a significant

kinetic isotope effect at 300 K of kcHJkcD, = 2.5 4- 0.2. Temperature dependent rate constants for C2H +

C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a

slight negative temperature dependence, which can be expressed as kc.,H: = 8.6 x 10 -16 T 1'8 exp[(474 4-

90)/7] cm 3 molecule-I s-I.

Introduction

This work is part of an ongoing project to measure, for the

first time, low-temperature rate constants of the C2H radical

with various hydrocarbons present in Titan's atmosphere. In

planetary atmospheres, such as Titan's, the ethynyl radical can

catalyze the dissociation of CH4 to form methyl radicals, CH3. t'2

C2H 2 + hv -- C2H + H (1)

C2H + CH 4 -- C2H 2 + CH 3
(2)

net CH4 _ CH3 ÷ H (3)

The recombination of two methyl radicals produces ethane,

C2H6, which can be transported downward to the moon's

surface. Hence, the reaction C2H + CHa is of central

importance in photochemical models of Titan to understand why

ethane is so abundant in Titan's atmosphere. 1'2

This is the first low-temperature study of the reactions

C2 H + CH4(CD4) __ C2H2(C2HD) + CH3(CD3) (4)

over the temperature range 154-359 K. A complete study of

the reaction C2H + C2H2 from 170 to 350 K, another critical

reaction in Titan's atmosphere, was already reported by this

laboratory; 3 here, these measurements have also been extended

to 143-359 K. Low-temperature rate constants of reaction 4

will help decide which reaction schemes for ethane production

are consistent with data from Voyager IRIS (infrared interfer-

ometer spectrometer) results. 4'5 In addition, NASA plans to

launch a mission called Cassini, which is intended to study

Saturn and its moon Titan some time in 1996. The rate

coefficients measured in this experiment will be used to model

Titan's atmosphere to compare calculated gas densities with

measured concentrations from the Cassini mission. In addition,
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Figure 1. Schematic of the experimental setup.

these results provide an experimental basis for theoretical studies

on primary isotope effects.

Experimental Technique

Briefly, the kinetics of C2H + CH4 and CD4 are studied using
transient infrared laser absorption spectroscopy. A schematic

of the experimental setup is shown in Figure 1. The low-

temperature kinetics measurements are described in detail in

an earlier paper. 6 The only significant change was to add
Brewster windows to the flow cell to incorporate a multipass

arrangement for the probe laser beam to increase the absorption

path length.
Ethynyl radicals are produced in the meter long variable

temperature flow cell by a pulsed excimer laser at 193 nm. The
excimer laser was operated at 55 mJ/pulse at a repetition rate

of 10 Hz. Acetylene has an absorption cross section of 1.35 x

10 -19 cm 2 at 193 nm 7 and a quantum yield of approximately

0.26 for C2H producti on.8 After accounting for UV laser loss
on the windows and absorption in air, the C2H concentration

was calculated to be no greater than 4.6 × 10 l° cm -3 for the

highest acetylene pressures (the acetylene number density was

© 1996 American Chemical Society
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Figure 2. (a) Decay of C2H with C_,H2. The solid line is the fitted
single-exponential decay. (b) Residuals to the fit. The oscillations at
lower frequencies are due to the noise from the color center laser.

in the range (1.6-6.4) x 1014 cm -3 in the CI-B (CD4)
experiments). For these experiments a 1000-1500-fold excess

of CH4 (CD4) with respect to C2H2 is always present. Contribu-
tions from secondary or radical-radical reactions can be
neglected since the time between collisions for C2H and CH4
(CD4) is 1000 times shorter than the time between collisions of
two C2H radicals. The transverse flow arrangement in the cell

allows high laser repetition rates with minimal photolysis of
the same gas volume. With typical linear flow rates of 1.9 x
102omolecules s -l, about 90% of which is helium, the photolysis
volume is replenished every 10 laser pulses. Kinetic experi-
ments are performed at various methane (methane-d) densities
((0.2-2.5) x l017 cm-3). The total helium density is in the

range (0.4-2.4) x 10 u cm -3, and the methane density is held
at 0.7 x 10 t7 cm -3 to test for a pressure dependence. In the
experiments involving just the reaction C2H + C2H2, the
acetylene number density was in the range (0.2-6.0) x 1015
cm -3, and the helium number density was in the range (0.32-
3.2) x 1018cm -3. For the highest acetylene pressures, the C2H
concentration is estimated to be no greater than 6.7 x 10 it cm -3.
Therefore, a 300-9000-fold excess of C2H2 with respect to C2H

is always present. Contributions from radical-radical reactions
=an be neglected since the time between collisions for two C,_H
radicals is 1000 times longer at the highest C2H density than
the time between collisions for C2H and C2H2.

A high-resolution color center laser tuned to the Qt if9) line
at 3593.68 cm -t of the A 21"I-X 237 transition probes the

:ransient concentration of ethynyl radical in absorption? A
scanning Fabry-Perot spectrum analyzer is used to ensure that
:he color center is running on one longitudinal mode, and a
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home-built scanning Michelson interferometer wavemeter _0 is
used to monitor the color center's wavelength.

The probe beam, after three to five multipasses, is directed
onto a 50-MHz 77 K Ge:Au detector which has a 20-mm 2

sensitive area. The transient signals are amplified and then

coadded using a 100-MHz digital oscilloscope. Typical single-
shot traces have a signal-to-noise ratio of 20-30. For a typical
run, transient signals from 1000 excimer pulses are averaged.
The amplitude of the transient CzH signal is found to be linear
with color center probe power.

In all experiments, acetylene, helium, and methane or
methane-d4 were flowed through a mixing cell before entering
the reaction cell. Helium is used to thermally equilibrate the
mixture with the cell walls. In earlier experiments, sulfur
hexafluoride, SFr, was used to vibrationally and electronically
quench the C2H; 3'6 this was omitted from this study because it
was found to have no effect on the relatively slow ground-state
removal rates, as discussed below. All gases are obtained
commercially with the following purities: He, 99.99%; C2H2,
99.6%; CH4, 99.99%; CD4, 99.6%. The acetone in the C2H2 is
removed by passing the gas through an activated charcoal filter.

Partial pressures of each gas are determined by calibrated mass
flow meters and the measured total pressure inside the cell. With

the use of isopentane as a cooling solvent, temperatures as low
as 143 K can be reached. For measurements taken above 300

K, heated water was used as the solvent.

Analysis of Kinetic Data

In this study we observe reactions from the ground state of
C2H (X2'r+ (0,0,0)) directly. For accurate measurements it is

necessary that the electronic and vibrationally excited states of
C2H be fully quenched. Work done by Glass et al. under similar
conditions reports that relaxation of the C2H (X(0,0,1)) state
occurs in approximately 1ps. 9 Therefore, if sufficient time has
elapsed, complete vibrational and electronic relaxation should
have occurred before any ground-state measurements are made.
The data is fit only beginning with times a factor of 3 longer
than the rise time to ensure complete relaxation of upper
vibrational states of C,_H. In previous studies SF6 was used as
a vibrational quencher. 3.6 Temperature dependent measurements
with and without SF6 were taken, and the measured rate
constants were found to be equal. Therefore, SF6 was not used
for this study.

Prior to measuring rate coefficients for the reaction C2H +
CH4 (CD4), an accurate temperature dependence investigation
of the rate constant for

C,H + C2HI--C4H 2 + H (5)

had to be completed. Earlier measurements could only be made
down to 170 K, and here it was desired to extend the results to
at least 143 K. 3 The experiments were done under pseudo-

first-order conditions where [C2H2] >> [C2H] by a factor of 500-
1500. The rate equation for reaction 5 integrates to

' [C2H], = [C2H]o exp(--kob_t) (6)

where

kob s = kC,H,[C2H2] (7)

The observed rate coefficients, kobs, are calculated by fitting
the observed decay traces to a single-exponential decay plus a
constant, eq 8, to fit the zero level of the base line

y = A exp(-kob_t) + constant (8)
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Figure 3. Plot of observed C,.H removal coefficient kob_versus C2H2
concentration. These data were taken at 155 K, and kc,H., for this plot

is (1.6 -4- 0.2) x 10 -I° cm 3 molecul e-I s-J.

where A is the pre-exponential factor, t is the time, and kobs is

the observed rate coefficient; see Figure_2. The fits for kobs are

then plotted against their respective [C2H2] concentrations, and

the gradient is kc,H.,; see Figure 3. The uncertainty in kc,.H: is

calculated on the basis of the uncertainties in fitting kobs,

measuring [C2H2], and measuring the temperature. This leads

to relative errors in kc,_m, of 10-13%, depending on the

temperature.
Table 1 is a summary of the rate constants measured for C2H

+ C2H2 down to 143 K. The data from ref 3 and the new data

can be fit approximately to the Arrhenius equation. However,

the data is best fit by the equation kc.,H: = 8.6 x 10 -16 T 18

exp[(474 4- 90)/7"] cm 3 molecul e-I s-l; see Figure 4.

All experiments involving methane were performed under

pseudo-first-order conditions in which [CH4], [CD4], and [C2H2]

>> [C2H]. The rate of change of [C2H] can be expressed as

d[C2H]/d / = _[C2H](kcx4[CX4 ] + kC:H2[C2H2]) (9)

where CX4 = CI-I4 or CD4. After integration

[C2H], = [C2H] 0 exp(--kobst)
(6')

kob s = kcx4[CX 4] + kC2H2[C2H2]
(10)

kobs -- kC,.H2[C2H2] -- kcx4[CX4] --- k' (11)CX4

The observed decay rates, kobs, are obtained by fitting the ,

observed traces to eq 8. They are then corrected for the

contribution of the C2H2 precursor reacting with C2H using both

previous measurements and new measurements down to 143

K, as noted in eq 11. Since C,,H reacts 100 times faster with

C2H2 then it does with CX4, the contribution to kobs from C2H2

+ C2H is kept below 40%. The values of k'cx4 are plotted

against their respective CXz concentrations, and a linear least

squares fit is used to determine kcx_; see Figure 5. The

uncertainty in kcx, is calculated by combining the accumulated

uncertainties in the corrected decay fits, which include errors

in kc,.H,, with the uncertainties in temperature and the measure-

ment of [CX4]. The error in kcx, is typically 10-20%.
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TABLE 1: Summary of Rate Constants for C2H q- C2H2

from 143 to 359 K

temp kc2H., temp kc:H:
(K) (cm 3 molecule -_ s -_) (K) (cm 3 molecule < s-b

359" (1.3-4-0.1) x 10 -1° 21 lb (1.3 +0.2) x 10 -1°
3517' (1.2 4- 0.2) x 10 -m 207 b (1.3 4- 0.2) x 10 -m

296 o (1.4-t-0.1) x 10 -m 201 b (1.3 -t-0.2) x 10 -m
295 b (1.3 4- 0.2) x 10 -m 199 b (1.3 4- 0.2) x 10 -1°
273 b (1.2 4- 0.2) x 10 -m 197 b (1.4 4- 0.1) x 10 -I°

263 b (1.2 4- 0.2) x 10 -1° 193 b (1.3 4- 0.2) x I0 -m
256 b (1.3 4- 0.2) x 10-m 193 b (1.3 + 0.2) x 10 -1°

245 b (1.3 4- 0.2) x 10 -m 191" (1.5 4- 0.1) x 10 -m
242 b (1.2"4-0.2) x 10 -I° 188 b (1.2-'3:0.2) x 10 -m
239 b (1.3 4- 0.2) x 10 -m 185 b (1.4 4- 0.2) x 10-m
233 b (1.2 + 0.2) x 10 -m 170 b (1.4 4- 0.2) x 10-I°

232 b (1.3 4- 0.2) x 10 -m 163 a (1.8 4- 0.2) x 10 -m
225 b (1.2 4- 0.2) x 10 -m 155" (1.6 4- 0.2) x 10 -m
223 b (1.3 4- 0.2) x 10 -I° 153 b (1.8 4- 0.2) x 10 -1°

223 b (1.2 4- 0.2) x 10 -m 143_ (1.9 4- 0.2) x 10 -m

213 b (1.4 + 0.2) x

"Measurements in this

study)

-21
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Figure 4. Arrhenius plot of the experimental data for C_.H + C2H2:
(O) this work; (O) data taken from ref 2. The fit to all the data is

given by 8.6 x 10 -16 T 1'8exp[(474 4- 90)/T] cm 3 molecule -_ s-1.

Table 2 summarizes the kinetic measurements in these

experiments for kcm and kcD_ from 154 to 359 K. The date
indicate that the rate coefficients kcm and kcm have a positive

temperature dependence from 154 to 359 K, which can be

expressed as kcm = (1.2 4- 0.1) x 10 -II exp[(-491 + 12)/7_

and kct)_ = (8.7 4- 1.8) x 10 -I_- exp[(-650 4- 61)IT] cm:

molecule -I s -I, respectively; see Figure 6. The reaction of C2F

-.}-CD4 exhibits a significant kinetic isotope effect at 300 K o:

kcmlkco, = 2.5 4- 0.2.

Discussion

Previous measurements of the reaction C,_H + Cl-h were

performed at room temperature and are summarized in TaN,
3. Rendlund et al. monitored the CH (A-X) product chemilu

minescence from the C2H + 02 reaction with and without Ct-h)

They measured a room temperature value of kcm = (4.8 4- 1.13
x 10 -12 cm 3 molecu le-I s-I. Okabe photolyzed C,_H,. at 14

nm and determined a ratio of kcaJkc:H: = 0.032 4- 0.001[

Using the present value of kc,_a: at room temperature of (1.3 -

0.2) X 10 -I° cm 3 molecule -1 s-I, one obtains a value for kc_

of 4.2 x 10 -12 cm 3 mole cule-I s-l)" Laufer photolyz:
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Figure 6. Arrhenius plot of C2H + CX4: (O) C_,H + CH4; (O) C_,H

+ CDa. The Arrhenius fits for kcm and kcu_ are given by (1.2 4- 0.1)

x 10-II exp[(-491 4- 12)/T] and (8.7 4- 1.8) x I0 -_-' exp[(-650 4-
61)/T] cm 3 molecule -j s-1, respectively.

TABLE 2: Summary of Rate Constants for C2H + CH4

(CD4) from 154 to 359 K

temp kcH_ temp kcD,
(K) (cm 3 molecule -1 s -I) (K) (cm 3 molecule -I s-I)

359 (3.1 4-0.4) x 10 -12 359
300 (2.3 4- 0.1) × 10 -12 300
226 (1.2 4- 0.1) x 10 -1-' 227

190 (8.7 4- 0.2) × 10 -13 190
159 (5.2 4- 0.6) x 10 -13
157 (4.7 4- 1.0) × 10 -13

154 (5.5 4- 1.0) x 10 -13

(1.5 4- 0.2) x 10 -12
(0.9 4- 0.1) x I0 -I-"

(5.2 4- 0.I) × 10-13
(2.8 4- 0.6) x 10 -13

CF3C2H in the presence of CH4, and the product [C2H2] was

monitored by absorption at 152 nm over time. 13 Laufer obtained

a kcn,= (1.2 + 0.2) x 10 -12 cm 3 molecule -I s-L Finally,

Lander et al. used a diode laser to measure the transient

depletion ofC2H (X 2Z+(0,0,0)) in absorption. 14 They measured

a kcH_ = (3.0 4- 0.3) × 10 -12 cm 3 molecule -1 s -I at 300 K.

The present rate coefficient measurements for C2H + CH4

at 300 K and from 154 to 359 K are kcn4 = (2.3 4- 0.1) x

J. Phys. Chem., Vol. 100, No. 12, 1996 4891

TABLE 3: Summary of Rate Constants for CzH + CH4 at

Room Temperature

ref kc,_ (cm 3 molecule -1 s -_) temp (K)

this work (2.3 4- 0.1) x 10-12 300
Renlund II (4.8 4- 1.0) × 10-12 298

Laufer _3 (1.2 4- 0.2) x 10-I" 297
Okabe I'- 4.2 4- 10 -1-'_ 298
Lander la (3.0 4- 0.3) x 10 -12 298

"Recalculated using the measured ratio and the present-day C2H +

C.,H., rate constant (1.3 4- 0.2) x 10-_° cm 3 molecule -_ s-L

10 -12 and kcH, = (1.2 4- 0.1) x 10 -jl exp[(-491 + t2)/7]

cm 3 molecule -_ s -1, respectively. From the Arrhenius fit, the

energy of activation for C2H + CH4 is equal to 4.3 4- 0.1 kJ

mol -I. Rate coefficient measurements for C2H + CD4 at 300

K and from 227 to 359 K result in a kct_ = (0.9 4- 0.1) x

10 -12 and kct)_ = (8.7 4- 1.8) x 10 -12 exp[(-650 4- 61)T] cm 3

molecule -1 s -I, respectively. The energy of activation for C2H

+ CD4 from 227 to 359 K is equal to 5.4 4- 0.5 kJ mo1-1. No

pressure dependence was found for kcn_ at 300 K over the

experimental range (0.4-2.4) × 1018 cm -3 variation in helium

buffer gas (15-75 Torr) and for a methane density of 0.7 x

10 t7 cm -3. Over this number density kcn_ = (2.4 4- 0.2) x

10 -12 cm 3 molecules -1 s -1. Both of these reactions, C2H +

CH4 (CD4), show a positive temperature dependence, consistent

with reactions involving a hydrogen abstraction as the rate-

determining step and a positive activation energy.

Our results are most consistent with those of Lander et al.

Both experiments monitor the direct disappearance of C2H. The

difference in kcH_ at 300 K between this work and the work by

Lander et al. can be attributed to experimental error in

determining number density and error in fitting the observed

signal. In the experiment by Renlund et al. the chemilumines-

cence of CH (A 2A) produced by the reaction C2H + O= was

used to monitor [C2H]. They were able to measure kcH_ by

keeping the concentration of O2 constant while varying the
concentration of CI-_. Renlund et al. measured a value for kcH4

at 300 K that is a factor of 2 greater than the rate constant

reported in this work. They reported in a later publication that

the reason for the larger kcH_ was due to vibrationally and or

electronically excited C2H producing the CH (A 2A-X 2I-i)

emission, t50kabe measured kcnJkc=H: to be 0.032 4- 0.0018.

This leads to a value of kcm that is _2 times faster at room

temperature than the kcH_ reported in this work when using (1_3

4- 0.2) × 10 -I° cm 3 molecule -I s-I for kc,H,_. However,

Okabe's result involved measuring 4Pc_H:/_bc,H.,, which is the

quantum yield ratio of diacetylene without (¢°c_H_) and with

(¢c_H.,) CH4 in the mixture and not a direct measurement of the

reaction of C2H with CH_.

The work presented here on C2H + C2H2 further suppo_s

the reasoning that C4H3' is formed via an addition mechanism

with no barrier to formation. The short-lived intermediate then

immediately dissociates to Call2 + H. A previous study on

C2H + C2H2 by this lab reported that within experimental error

there was no temperature dependence over 170-350 K. 3 More

recent results by Van Look et al. also showed no evidence for

a temperature dependence from 295 to 450 K. 16 They measured

rate coefficients of the reaction C2H + 02 by monitoring CH-

(A -'A _ X 217) chemiluminescence. The rate coefficients for

C2H with C2H: were taken from the ),-intercepts of their k'

versus [O2] plots. An Arrhenius fit to their data is reported as

kc:H,_ = (1.3 4- 0.2) x 10 -_° exp[(0 4- 10)/T] cm 3 molecule -_

s -_. Despite previous measurements for the rate coefficients

of C2H + C2H2, which show no definite temperature dependence

above room temperature,3'9'l 6.17 new data presented in this study
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does reveal a small negative temperature dependence in the rate

coefficients for C M + C2H__.

The measured kinetic isotope effect at 300 K is kcHJkcD_ =

2.5 -4- 0.2. Unfortunately, no transition-state calculations have

been done on this reaction to be able to compare theory with

experiment. Judging by the magnitude of the isotope effect and

the reaction mechanism involved, the reaction C2H + Ct-I4 (CD4)

exhibits a large primary isotope effect in which the main

contribution is the difference in zero-point energies between

the initial states and the transition states. _8-2° Hopefully this

research will encourage theoretical studies of C2H + CH4 (CD4)

for comparison.

In addition to the kinetic isotope effect, there is the possibility

for tunneling to occur in this reaction between the H (D) atom

of methane and the carbon atom of the C,_H radical. Unfortu-

nately, no curvature is detected in the Arrhenius plot over 154-

359,K. This does not eliminate the possibility of tunneling

taking place. If the experiment could be done over a larger

temperature range, the possibility of detecting curvature in the

Arrhenius plot would be more favorable.

Results based on the effect of reaction 2 on photochemical

model_ of Titan are forthcoming. There is little question that

this:reaction plays a key role in determining the ethane

concentration on Titan, but recent experiments by Mordaunt et

al. 2_ have uncovered a new CI-I4 photolysis channel that will

affect current photochemical models. Mordaunt et al. have

shown that the direct photodissociation of CI-I4 to CH3 + H is

the main source of methyl radicals in Titan's atmosphere. Both

the discovery by Mordaunt et al. and the data in this work should

help to clarify the production of ethane in Titan's atmosphere.

Updated versions 2 of the Yung et al _ model and more low-

temperature rate coefficients of pertinent reactions are needed

to determine whether a complete analysis will match forthcom-

ing spacecraft observations.
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